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A mathematical model for the unsteady fluid-dynamic response of the semi- 
circular canals is developed. The endolymph is assumed to be an incompressible 
Newtonian fluid and the presence and effects of both the utricle and the cupula 
are specifically accounted for. A first approximate solution is obtained using a 
singular perturbation method. It is shown that the canal can be modelled 
as a heavily damped, second-order system which behaves as an angular-velocity 
meter. A comparison of the model response with experimental results is made; 
fairly good agreement is found. 

1. Introduction 
The semicircular canals are the primary transducer for the sensing of angular 

motions. As such, they are part of the organs of equilibrium. The importance of 
these organs for the successful functioning of the human body is obvious. The 
semicircular canals have, therefore, attracted the attention of physiologists, 
sensory psychologists and physicians over the years. From the very beginning, 
physical scientists have been consulted to provide an explanation of the mech- 
anics of this fascinating organ. 

The advent of aerospace flight with its new demands on the human organism 
has accelerated the pace of vestibular research. It has become apparent that, 
while the semicircular canals are an engineering system of some elegance, they 
are capable of producing disorienting sensations when subjected to non-physio- 
logical motion. This knowledge has helped aerospace planners to avoid situations 
which might prove discomforting or disabling to the pilot or astronaut. 

This alone is an adequate reason for wishing to study the mechanics of the 
canals, but a further incentive comes from the fact that a full understanding 
of the mechanics of healthy semicircular canals may contribute to the diagnosis 
and treatment of canals in a diseased state. 

2. Anatomy and physiology 
The semicircular canals are located, along with the organ of hearing, in the 

inner ear. There are three sets of canals on each side of the head (see figure I, 
plate 1). They are oriented in almost mutually orthogonal planes so that rotation 
about any axis may be properly sensed. As shown, each canal consists of two 
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parts: an outer canal, which is a channel carved in bone, and an inner, mem- 
branous canal. The inner canal is filled with a fluid called endolymph. The space 
between the membranous and bony canal is filled withperilymph, a fluid different 
in composition from endolymph. 

One end of each semicircular duct is enlarged to form its ampulla. The ampulla 
nearly fills the cross-section of the bony canal and terminates on the utricle. The 
ampulla contains the cupula, a gelatinous dividing partition with the same density 
as endolymph. The cupula fills the entire cross-section of the ampulla, thus 
interrupting the otherwise continuous fluid path through the duct, utricle and 
ampulla. 

The cupula is the system transducer. It is connected to nervous tissue at its 
base. Mechanical deflexion of the cupula is converted into electrical impulses 
which transmit the state of angular motion along the vestibular nerve to the 
central nervous system. 

Qualitatively, the manner in which the canals work is as follows. A n  angular 
acceleration of the head causes the bony canals and the membranous structure 
attached to them to accelerate in a similar manner. The inertia of the endolymph, 
however, causes it to lag behind the motion of the head. Thus there is a flow 
of endolymph relative to the duct walls. This flow deflects the cupula, initiating 
the electrical impulses to the brain. 

3. Review of the literature 
The theory that angular acceleration produces an inertially induced flow of 

endolymph was first proposed independently by Mach (1875), Breuer (1874) and 
Crum Brown (1874). They did not, however, develop a mathematical model for 
the flow problem; there was even doubt on the part of some that fluid would 
flow a t  all in the very narrow ducts of the semicircular canals.‘Gaede (1922) and 
Schmaltz (1931) were perhaps the first to attempt a mathematical description 
of flow in the canals. Their efforts are of limited utility however, since they 
ignored the presence of the cupula and utricle. (In all fairness to these investi- 
gators, we should point out that it was not known at the time that the cupula 
filled the entire cross-section of the ampulla.) 

The first to propose the model used today was Wilhelm Steinhausen (1933), 
who suggested that the canals respond to angular acceleration in the same 
manner as would a heavily damped torsion pendulum. The mathematical 
formulation of this idea, which in the literature has come to be known as the 
‘torsion pendulum equation’, may be written in the form 

I8+B6+Ke = -la, (1) 

where 8, and 8 represent respectively the mean angular displacement, mean 
angular velocity and mean angular acceleration of the endolymph relative to 
the duct and a is the component of the angular acceleration of the head per- 
pendicular to the plane of the canal. The coefficient 1 is the inertia term defined 
by the mass and distribution of the endolymph. The damping coefficient B 
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FIQTJRE 2. Bode plots of the gain and phase lag between the displacement of the endolymph 
0 and the angular velocity o as a function of the frequencyfof sinusoidal oscillation. 

denotes the ratio of torque resulting from viscous forces to the mean angular 
velocity of the endolymph. The stiffness of the cupula is represented by K .  

The Laplace transform of (1) leads to 

O ( S )  = - Ia(s)/(ls’ + Bs + I<), (2) 

where O(s) and a(s )  are the Laplace transforms of O(t )  and a(t). Since the system 
is heavily overdamped, a convenient and sufficiently accurate form of (2) is 

where TI = ‘long’ time constant N B/K,  Tz = ‘short’ time constant -N I /B  and 

Another convenient form of (2) is obtained by writing down the transfer 
Ti- 

function from the angular velocity w to 8: 

The usefulness of such a formulation is seen when we display the frequency 
mponse of the system described by (4) in terms of Bode plots. Figure 2 (a) is a 
plot of the logarithm of the ratio of the amplitudes of 0 and w as a function of 
frequency. The phase lag between O and w is plotted in figure 2(b ) .  It is clear 
‘hm these graphs that the semicircular canal functions as an angular-velocity 
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meter over the range 2/Tl to 1/2T2, which, as we shall show below, includes the 
range of physiological- activity. 

Since the response of the canals to any input will be governed by Tl and T,, 
much effort has been expended in attempting to determine these two time 
constants. One of the problems associated with all of these attempts is the 
determination of the coefficient B, which appears in both TI and T,. B is invariably 
calculated assuming Poiseuille flow (see, for example, SchmaItz 1931; van 
Egmond, Groen & Jongkees 1949; Mayne 1965). But B is a constant only for 
steady flow, and the inertially induced flow in the semicircular canals is anything 
but steady. To clarify this issue, we have re-examined the fluid dynamics of 
semicircular canals. 

4. Formulation of the problem 
We now examine the fluid mechanics of a single canal. The membranous 

semicircular canal duct is approximated for initial study by a section of a rigid 
torus filled with an incompressible Newtonian fluid. For the purpose of this 
analysis, the perilymph is assumed to have no effect on the deflexion of the 
cupula. The governing equation for the flow of fluid in the duct is the classical 
Navier-Stokes equation 

a q a t  + v . vv = - p - v p  + F + v v 2 ~ ,  ( 5 )  

where v is the velocity of the fluid with respect to an inertial reference frame, p 
is the density, p is the pressure, F is the body force and v is the kinematic viscosity. 

We are interested in the flow of fluid with respect to the duct. Therefore we 
introduce the symbol u, which will represent the velocity of the fluid relative 
to the duct wall. If v, is the velocity of the wall, then 

v = u+v,. ( 6 )  

(7) 
where v, is the velocity of the centre of curvature of the duct, w is the angular 
velocity of the canal, R is the position vector of the centre of the duct with respect 
to the centre of curvature, and r is the position vector of the point on the duct 
wall with respect to the centre of the duct (see figure 3). Since I r I / I  RI < 1, we can 
approximate v, by v, 2i vc+w x R. 

Now the velocity of a given point on the duct wall is given by 

v, = v ,+w x (R+r) ,  

(8 )  

Therefore v = U+V,+O x R. (9) 
Substituting (9) into (5) we obtain 

&/at +u . Vu +a, + a x R + w x (0 x R) = -p-lVp + F + vV2u, (10) 

where a, is the acceleration of the centre of curvature of the duct and a is the 
angular acceleration of the canal. 

Let the pressure gradient Vp be split into two parts: 

vp = Vp' -k Vp", (11) 
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CUpula 

FIGURE 3. A schematic diagram of a single semicircular canal. R is a vector from C to 
the centre of the duct and r is a vector from the tip of R to the duct wall. 

where Vp” is the pressure gradient associated with a,, i.e. 

a = -p-lVpff. (12) 

This is the same sort of pressure gradient as would arise if the canal were standing 
in a gravity field. The acceleration a, thus leads to no net flow within the canals. 

Subtracting a, from the left-hand side of (10) and -Vp”/p from the right 
side we obtain 

au/at+u. V u  +a x R+ o x (O x R) = -p-lVp’+F+ YV%. (13) 

Since lrl/lR[ < 1, we may express this equation in cylindrioal co-ordinates. The 
axial component is then 

where r is the radial co-ordinate, z is the axial co-ordinate, u is the velocity of 
the fluid in the axial direction relative to the duct wall, Ris the radius of curvature, 
a is the component of a perpendicular to the canal and ap/az is the axial com- 
ponent of Vp’. 

We now consider the possible sources of a pressure gradient. The first source 
we shall examine is the cupula. The cupula, when deflected, exerts a restoring 
force on the fluid. We model the cupula as a membrane with linear stiffness 
K = Ap/A V ,  where Ap is the pressure difference across the cupula and A Tr is its 
volumetric displacement. If the angle subtended by the membranous duct is 
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denoted by 8, the pressure gradient in the duct produced by the cupula is 
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8pla~ = K A  VIPR. (15) 

Now 

in which a is the radius of the duct. 
A pressure gradient in the duct is also produced by the presence of the utricle. 

The size of this contribution may be assessed in the following manner. A cylinder 
of length I being accelerated through inertial space at a rate d will have a pressure 
difference between its ends of Ap = p i l .  

If the utricle had closed ends, the pressure difference due to rotational motion 
only could be approximated by 

where y is the angle subtended by the utricle. Van Buskirk (1976) has shown that 
the small acceleration of the fluid in the utricle relative to the walls may be 
ignored. He has also shown that the pressure drop in the fluid as i t  moves from 
the larger utricle into the narrow duct is negligible. Therefore (18) is an accurate 
approximation and the pressure gradient in the duct due to the presence of the 
utricle and ampulla is 

Again, of course, we have ignored the pressure gradient associated with a, (see 
(12) et seq.). Combining this result with the pressure gradient due to the cupula 

(17) 

Ap = pyR2a, (18) 

aPlaz = (YIP) PRE.  (19) 

we have KAV 
BR * 

- ap -- - 'pRa+- 
B 

Introducing (16) into (20) and substituting the resuIting expression into (la), 
we obtain the governing equation for the fluid flow in the semicircular canals: 

Equation (2 1)  is non-dimensionalized by substituting the following variables: 

r' = rla, t' = tv/a2, u' = u1RQ 

where !2 is some characteristic angular velocity of the canal. In  terms of these 
variables (21) becomes 

-+- aui i + y p  a(t') = -e f / 'u 'r 'dr 'd t '  +7(rr3), 1 au' 
at' n 0 0  

where E = 2Knas/pPRv2. This equation contains only one non-dimensional para- 
meter, E .  
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5. Solution 
We now wish to study the response of the canals to two specific kinds of 

angular acceleration. We shall first obtain an approximate solution for the case 
of a step input in angular velocity, corresponding to an abrupt angular motion 
of the head. Since the problem is a linear one, the fiequency response to sinu- 
soidal motion of the head can be readily obtained from this f i s t  solution. 

A step in angular velocity corresponds to an impulse in angular acceleration. 
Thus, in dimensionless form, 

where &(t) corresponds to a unit impulse or Dirac delta function applied at 
t = 0. Substituting (23) into (22), we obtain the governing equation for the 
particular flow we are considering: 

a(t) = sz&(t), (23) 

Note that in (24) we have dropped the primes. From this point on we shall work 
with the non-dimensionalized form of the governing equation only. 

The boundary and initial conditions for this problem are 

u(1, t )  = 0, au(0, t)/ar = 0, u(r, 0) = 0. (25) 
Before solving (24), we examine the order of magnitude of the constant e. 

The dimensions of the human semicircular canal are a = 0.15 mm andR = 3.2 mm 
(Igarashi 1966). Studies of the physical properties of endolymph (e.g. Steer 1967) 
suggest that it has a viscosity and density close to those of water, i.e.,u = 1.OmPas 
and p = 103kgIm3. Detailed geometrical studies of the labyrinth of the cat 
(Fernandez & Valentinuzzi 1968) indicate that p =  1 . 4 ~  and y = 0.42~.  We 
accept these values for humans. No data are available in the literature for the 
cupula stiffness K of humans. For the purpose of this discussion we adopt the 
value K = 3-4 x 1O9Pa/m3. (This is not entirely arbitrary, as it yields results 
consistent with experiment, as will be seen below.) Using these values, 

8 = 2Kn-a6/pflRv2 = 0.017. 

Thus e is very small, while the normalized velocity u is of order unity. Thus the 
last term on the right side of (24) is very small when t is of order unity or less. 
However, since the term is an integral over t, it  can in fact dominate when t is 
large. This gives the problem a singular character. We shall obtain a fist approxi- 
mation using a singular perturbation method. 

5.1. Small values o f t  

u = u(1) + €U@) + 8 2 d 3 )  + . . . . (26) 

Substituting this series into (24) and equating terms of like order gives the fist 
approximate equation: 

The solution is assumed to take the form of a perturbation series 
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The solution satisfying the initial and boundary conditions (25) has been obtained 
by Van Buskirk & Grant (1973), and is 

where J ,  is the zeroth-order Bessel function of the first kind, An is its nth root 
and J1 is the first-order Bessel function of the first kind. We are interested in the 
displacement of the cupula. An appropriate non-dimensional measure of that 
displacement is the volume-flow-rate integral q5, given by 

(note that A V  = 2RQ77cz4+/v). The fkst approximation to q5 (for small t )  is 

5.2. Large times, small t 
Let i? = st be the stretched independent variable. When this is substituted into 
(24) we find that 

The integral on the right-hand side of (31) can be written as 

where we assume 
for all practical purposes 

< T ( E )  < I. If e is sufficiently small, then, according to (30), 

and the fist approximation to (31) for t 8 T ( E )  is 

Equation (34) is easily solved by using the Laplace-transform method, the 

and since T ( E )  4 1, we have 
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Equations (30) and (37) can now be combined to yield the following un$ormZy 
valid first approximate solution for 4: 

5.3. Transfer function 

The transfer function relating the non-dimensional volumetric displacement q3 
to the angular acceleration a is obtained by finding the Laplace transform of d, 
and dividing by the Laplace transform of a. The first approximation is 

which may in turn be approximated to very high accuracy by the simpler 
expression 

This may be put into a form analogous to (3), i.e. 

where 71 = IS/€, the non-dimensional long time constant, and 7 2  = l/A:, the 
non-dimensional short time constant. Transforming back to the physical time 
domain and expressing the transfer function in terms of Band w, we obtain 

6 -4(1+r/P)s/A2, 
-(s) w = (s + T;’) (s + TL’)’ 

where TI = 8pPR/Kna4 and T2 = a2/h:v. 

5.4. Frequency response 
The frequency response of the system is illustrated in figure 2,  The important 
points on this figure are the gain G = 4( 1 + y/P) a2/A! v, thelower cut-off frequency 
T T ~ ,  the upper cut-off frequency Tgl and the natural frequencyf, = (TITz)-*. In 
the physical domain 

G = 3.5ms, Tcl = 0*048rad/s = 7.6mHz, Tgl = 260rad/s = 41Hz, 

f ,  = 3.5 rad/s = 0.56 Hz. 

5.5. Impulse response 

The impulse response of the system given by (42) is 

where R is the magnitude of the step in angular velocity. The initial displace- 
ment of the cupula is governed by the ‘short’ time constant T2 = 3.9ms 
and is shown in figure 4. The maximum displacement of the endolymph is 
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Q) =a u ( 1 )  t 

FIUURE 4. The short-term response of the endolymph to a 
step input in angular velocity of magnitude R. 

0 =a u ( f )  

0 TI 3 Tl 3 Tl 4 TI 5 TI 

t 
FIGTJRE 5 .  The long-term response of the endolymph to a step input in angu-,r vt-Jcity 

of magnitude a. The time scale in this figure is much longer than that in figure 4. 

3.5 x 10-SQrad, where R is given in rad/s. The return phase of the cupula is 
governed by the ‘long’ time constant TI and is shown in figure 5. TI = 21 s, which 
is approximately what has been observed in experimental studies. 

It is interesting to note the sensation associated with such stimulation. The 
time constant T2 is too short to be ‘felt’ and the sensation is of an instantaneous 
onset of angular velocity. But then, even though the angular velocity remains 
a t  a constant level, the sensation of angular velocity decays exponentially. 
Obviously, one’s sensation of angular velocity is linked to the displacement of 
the cupula. 
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6. Experimental observatioqs 
Several researchers have attempted to ascertain experimentally the mechanics 

of the semicircular canals. The first of these were probably van Egmond et al. 
(1949). Using subjective sensation aa an indicator of canal response they 
measured the long time constant TI and the natural frequency fn for humans. 
They found Tl 21 1 0 s  and f, = 0.16 Hz. Later researchers used a more objective 
measure of semicircular-canal response, namely nystagmus, a characteristic 
movement of the eyes associated with semicircular-canal stimulation. Malcolm 
(1968), using nystagmus and accounting for adaptation of the central nervous 
system, found a mean value of Tl = 21 s for eight subjects. Niven & Hixson 
(1961), using sinusoidal oscillation as a stimulus and nystagmus as a measure 
of canal response, found a mean value of fn  = 0.21 Hz for six subjects. 

By choosing an appropriate value for K, we have matched our theoretical 
time constant TI to that observed by Malcolm (1968). We should note in all 
candor, however, that our predicted value off, is more than twice that observed 
experimentally. Of course, neural processing could account for that difference, 
but a definitive answer will have to await further study. 

7. Summary and conclusions 
In this paper we have examined the fluid dynamics of a single semicircular 

canal. We have shown that it responds, as earlier studies had suggested, like 
a heavily damped, second-order system. An examination of the frequency 
response shows that its function is that of an angular-velocity meter. While the 
canals work quite well as w-meters for ordinary motions, we see from an examina- 
tion of the impulse response that an unphysiological motion can lead to the 
generation of erroneous signals. It has been suggested in the literature that 
erroneous signals to the central nervous system are the cause of spatial dis- 
orientation and motion sickness (Johnson & Jongkees 1974). 

This project was supported by NIH research grant no. NS-10054, awarded 
by the United States Institute of Neurological Diseases and Stroke, PHS/DHEW. 
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FIGURE 1. The vestibular apparatus of man. 
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